Abelian pro-countable groups and orbit equivalence relations
نویسندگان
چکیده
منابع مشابه
Countable Borel equivalence relations, Borel reducibility, and orbit equivalence
ing from the proof given above for Gaboriau-Popa we obtain theorems such as: Theorem 2.10 Let (X, d) be a complete, separable metric space equipped with an atomless Borel probability measure μ. Suppose Γ acts ergodically by measure preserving transformations on (X,μ) and the action on (X, d) is expansive. Let (Et)0<t<1 be a collection of distinct countable Borel equivalence relations on X with:...
متن کاملCountable abelian group actions and hyperfinite equivalence relations
An equivalence relation E on a standard Borel space is hyperfinite if E is the increasing union of countably many Borel equivalence relations En where all En-equivalence classs are finite. In this article we establish the following theorem: if a countable abelian group acts on a standard Borel space in a Borel manner then the orbit equivalence relation is hyperfinite. The proof uses constructio...
متن کاملCountable Borel Equivalence Relations
This paper is a contribution to a new direction in descriptive set theory that is being extensively pursued over the last decade or so. It deals with the development of the theory of definable actions of Polish groups, the structure and classification of their orbit spaces, and the closely related study of definable equivalence relations. This study is motivated by basic foundational questions,...
متن کاملOrbit equivalence and permutation groups defined by unordered relations
For a set Ω an unordered relation on Ω is a family R of subsets of Ω . If R is such a relation we let G(R) be the group of all permutations on Ω that preserve R, that is g belongs to G(R) if and only if x ∈R implies x ∈R. We are interested in permutation groups which can be represented as G= G(R) for a suitable unordered relation R on Ω . When this is the case, we say that G is defined by the r...
متن کاملPopa Superrigidity and countable Borel equivalence relations
We present some applications of Popa’s Superrigidity Theorem to the theory of countable Borel equivalence relations. In particular, we show that the universal countable Borel equivalence relation E∞ is not essentially free.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 2016
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm987-1-2016